The Mechanism of the Reaction of Diphenylketene with Bases in Aqueous Solution: Nucleophilic Attack versus General Base Catalysis of Ketene Hydration

نویسنده

  • J. Andraos
چکیده

Diphenylketene was generated in aqueous solution by flash photolysis, and rates of its decay accelerated by 30 bases of various structure were determined. The rate constants so obtained did not show the regular dependence on basic strength expected if the bases were serving as general base catalysts assisting the attack of water on the ketene, but they did vary with polarizability and steric bulk of the base in the way expected for direct nucleophilic attack of the base on the carbonyl carbon atom of the ketene. Assignment of a direct nucleophilic role to the bases is supported by the formation of amide products in addition to diphenylacetic acid in the reaction of diphenylketene accelerated by ammonia and morpholine, and quantitative analysis of the product ratios shows that these two bases serve only as nucleophiles and that the diphenylacetic acid is formed by uncatalyzed reaction of diphenylketene with solvent water. Ketenes are interesting and useful substances whose chemistry is receiving renewed attention,’ stimulated in part by the development of rapid, flash-photolytic techniques for studying these reactive molecules.2 This has led to a wealth of new information, among which is the discovery that the reaction of ketenes with wholly or partly aqueous solvents is accelerated by This acceleration could be due to general base catalysis of ketene hydration, through a transition state in which the base assists nucleophilic attack of a water molecule on the ketene by removing one of its protons, eq 1, or it could be the result of direct nucleophilic attack by the base itself, eq 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REACTION OF QUINONEIMINES WITH KETENES

The reactivity of quinoneimines towards ketene and diphenylketene was examined. N-Phenylbenzoquinoneirnines (I), (2) and also N-phenylnaphthoquinoneimine react with ketene to give the spiro-adducts (5), (7) and (1 1) respectively. These adducts were stable even after prolonged heating in high boiling solvent. Reaction of the above imines with diphenylketene also afforded 13- lactam spiro-a...

متن کامل

Carbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation

Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...

متن کامل

Carbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation

Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...

متن کامل

Kinetics and Mechanism of the Substitution of Ligand (Urea) of [Ti(ur)6]3+ by H2O and SCN¯ in Ethanol Solution

The kinetics of substitution of [Ti(ur)6]3+ by H2O and SCN¯ ion in ethanol solution have been measured spectrophotometrically by stopped-flow method. Water is a good nucleophile toward Ti(III) substrates. Even the solvent ethanol appears to be a poor ligand when compared to water. Substitution, in general follows two parallel pathways: "direct" (second order...

متن کامل

Mechanism of the aminolysis of Fischer alkoxy and thiocarbene complexes: a DFT study.

B3LYP calculations have been carried out to study the reaction mechanism of the aminolysis of Fischer carbene complexes of the type (CO)(5)Cr=C(XMe)R (X = O and S; R = Me and Ph). We have explored different possible reaction mechanisms either through neutral or zwitterionic intermediates as well as a general base catalysis assisted by an ammonia molecule. Our results show that the most favorabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001